FILTER POSTS SHOW ALL AVIATION MARITIME
FILTER POSTS SHOW ALL AVIATION MARITIME

The Importance of Low Latency in Business Aviation Connectivity

In previous blogs and in several of our reports, we’ve covered the “three C’s of in-flight connectivity” (which should really be four when you consider the costs involved). Latency is another important, but often overlooked, part of the connectivity experience and is defined as the total time it takes a data packet to travel from one node to another. It is sometimes argued that latency has little bearing on most passenger-facing connectivity applications, and this may well be true in commercial aviation (although high latency can cause page load times to be slow when take rates are high). However, the way connectivity is used, and the expectations that accompany this use, are completely different in business aviation. Business travellers are much more inclined to use video conferencing software, have VoIP conversations and connect to a VPN. For each of these applications, latency is of paramount importance. Online in-flight gaming is another emerging application that can require a very low latency system. The rollout of 5G networks, which exhibit latency of between 20 and 30 milliseconds, will increase pressure on vendors to shorten the cycle time between the on-ground experience and expectations in the air.

According to NetForecast, an independent provider of broadband performance solutions, the average roundtrip packet time from a PED to an online service using a landline connection is 25 milliseconds. In-flight, however, across all currently deployed technologies, it is in the region of 790 milliseconds. Furthermore, the company estimates that packet loss, which is the number of packets that don’t make it to their destination and need to be re-sent, is around 0.05 per cent using a landline connection, but as high as 13 per cent on in-flight connections. Latency and packet loss at this level can, therefore, cause problems with web pages loading, especially if you have multiple users requesting data at the same time, creating a bottleneck that is independent of bandwidth.

While there are technological strategies to mitigate against the impact of latency on services, the only real way to minimise it is to reduce the distance between the origin of a data packet and its destination. For this reason, satellites in orbit at a higher altitude have a higher degree of latency than those in a lower orbit. The same is true of ATG communications. Because cell towers on the ground are closer to the aircraft flying above, latency is inherently lower than with any kind of satellite system. Another important consideration is the design of the connectivity system itself. Those that allocate the majority of their bandwidth in the forward link can expect to see a higher level of roundtrip latency than a symmetrical design where bandwidth is equally distributed between the forward and return link.

When it comes to satellite networks, it is also important to consider the impact of the ground network on latency. Tests of new LEO satellites have shown incredibly low latencies, but one should note that these are not necessarily representative of real-world conditions. OneWeb, for example, achieved average single trip latency of 32 milliseconds during testing in July 2019 and Telesat achieved 18 milliseconds round-trip latency in a February 2020 test. In both instances, there was no “true” ground network to speak of where a packet of data would travel from an aircraft to a satellite, to a ground station and an Internet breakout point (and back). Rather, these tests measured the physical round-trip time from terminal to ground (via satellite) but not out to the Internet via the ground network.

As most LEO networks are still in their infancy, their exists little data to show what average measured round-trip latency might look like on a business aircraft. We do know that whilst Iridium expects round-trip latency for its Certus solution to be in the region of 30 – 50 milliseconds in future, the network was actually pinging at about 500 milliseconds as of February 2019. Similarly, our understanding of OneWeb’s proposed architecture, had it been built out, is that round-trip latency could have been as low as 40 milliseconds or as high as 200 milliseconds, depending where in the world the aircraft happened to be and where traffic terminated on the ground. Along these lines, Telesat’s marketing material for its upcoming LEO constellation indicates that although round-trip latency for the space segment is expected to be less than 50 milliseconds, taking account of both the space and ground segments increases this to less than 100 milliseconds.

Furthermore, the Federal Communications Commission (FCC) recently provided information on why it doesn’t think SpaceX and can call itself low latency for purpose of getting funding under the bulk of the $16 billion rural broadband initiative. The proposal, released this week, is scheduled for a vote by the five-member commission at its 9th June meeting and suggests that – as intimated above – “the distance between Earth and satellites is not the only factor determining latency” and that “in the absence of a real world example of a non-geostationary orbit satellite network offering mass market fixed service to residential consumers that is able to meet our 100 millisecond round trip latency requirements, Commission staff could not conclude that such an applicant is reasonably capable of meeting our low latency requirements, and so we foreclose such applications”. SpaceX claims round-trip latency of its Starlink network will be less than 50 milliseconds.

MEO satellite networks are also in their infancy as far as their use in providing connectivity to business jets goes. SES, which does not yet use its O3b constellation for airborne connectivity, claims that general end-to-end round-trip latency is in the region of 140 milliseconds for data services. Likewise, we do not yet have an accurate read on what average round-trip latency will look like on a business jet connected to a next-gen ATG network such as those being developed by Gogo and SmartSky Networks. The latter, which will launch its network in 2020, one year ahead of Gogo’s new 5G ATG network, claims users will see round-trip latency below 100 milliseconds. Indeed, during various demo flights, the company has indicated that the latency when playing online multiplayer game, Fortnite, typically ranged between 70 and 90 milliseconds.

For these reasons, the table below shows only average measured round trip latencies for the two types of aircraft network commonly deployed today: legacy ATG and the GEO networks that have been the staple of satellite-based IFC for some time. For comparison, the table also shows what typical round trip latency looks like for familiar terrestrial networks such as home Internet and ground-based LTE.

Table 1: Comparison of Round-Trip Latency Associated with Different Networks

Source: www.experiencetest.net

-
[fusion_builder_container hundred_percent="no" hundred_percent_height="no" hundred_percent_height_scroll="no" hundred_percent_height_center_content="yes" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" status="published" publish_date="" class="" id="" border_size="" border_color="" border_style="solid" margin_top="" margin_bottom="" padding_top="" padding_right="" padding_bottom="" padding_left="" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" enable_mobile="no" parallax_speed="0.3" background_blend_mode="none" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" video_preview_image="" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0"][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" spacing="" center_content="no" link="" target="_self" min_height="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" hover_type="none" border_size="0" border_color="" border_style="solid" border_position="all" border_radius="" box_shadow="no" dimension_box_shadow="" box_shadow_blur="0" box_shadow_spread="0" box_shadow_color="" box_shadow_style="" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="" margin_bottom="" background_type="single" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_image_id="" background_position="left top" background_repeat="no-repeat" background_blend_mode="none" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset="" filter_type="regular" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0" last="no"][fusion_imageframe image_id="5405|full" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="none" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]https://valourconsultancy.com/wp-content/uploads/2020/05/bizjet-e1590096147998.jpg[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text columns="" column_min_width="" column_spacing="" rule_style="default" rule_size="" rule_color="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""] In previous blogs and in several of our reports, we’ve covered the “three C’s of in-flight connectivity” (which should really be four when you consider the costs involved). Latency is another important, but often overlooked, part of the connectivity experience and is defined as the total time it takes a data packet to travel from one node to another. It is sometimes argued that latency has little bearing on most passenger-facing connectivity applications, and this may well be true in commercial aviation (although high latency can cause page load times to be slow when take rates are high). However, the way connectivity is used, and the expectations that accompany this use, are completely different in business aviation. Business travellers are much more inclined to use video conferencing software, have VoIP conversations and connect to a VPN. For each of these applications, latency is of paramount importance. Online in-flight gaming is another emerging application that can require a very low latency system. The rollout of 5G networks, which exhibit latency of between 20 and 30 milliseconds, will increase pressure on vendors to shorten the cycle time between the on-ground experience and expectations in the air. According to NetForecast, an independent provider of broadband performance solutions, the average roundtrip packet time from a PED to an online service using a landline connection is 25 milliseconds. In-flight, however, across all currently deployed technologies, it is in the region of 790 milliseconds. Furthermore, the company estimates that packet loss, which is the number of packets that don’t make it to their destination and need to be re-sent, is around 0.05 per cent using a landline connection, but as high as 13 per cent on in-flight connections. Latency and packet loss at this level can, therefore, cause problems with web pages loading, especially if you have multiple users requesting data at the same time, creating a bottleneck that is independent of bandwidth. While there are technological strategies to mitigate against the impact of latency on services, the only real way to minimise it is to reduce the distance between the origin of a data packet and its destination. For this reason, satellites in orbit at a higher altitude have a higher degree of latency than those in a lower orbit. The same is true of ATG communications. Because cell towers on the ground are closer to the aircraft flying above, latency is inherently lower than with any kind of satellite system. Another important consideration is the design of the connectivity system itself. Those that allocate the majority of their bandwidth in the forward link can expect to see a higher level of roundtrip latency than a symmetrical design where bandwidth is equally distributed between the forward and return link. When it comes to satellite networks, it is also important to consider the impact of the ground network on latency. Tests of new LEO satellites have shown incredibly low latencies, but one should note that these are not necessarily representative of real-world conditions. OneWeb, for example, achieved average single trip latency of 32 milliseconds during testing in July 2019 and Telesat achieved 18 milliseconds round-trip latency in a February 2020 test. In both instances, there was no “true” ground network to speak of where a packet of data would travel from an aircraft to a satellite, to a ground station and an Internet breakout point (and back). Rather, these tests measured the physical round-trip time from terminal to ground (via satellite) but not out to the Internet via the ground network. As most LEO networks are still in their infancy, their exists little data to show what average measured round-trip latency might look like on a business aircraft. We do know that whilst Iridium expects round-trip latency for its Certus solution to be in the region of 30 – 50 milliseconds in future, the network was actually pinging at about 500 milliseconds as of February 2019. Similarly, our understanding of OneWeb’s proposed architecture, had it been built out, is that round-trip latency could have been as low as 40 milliseconds or as high as 200 milliseconds, depending where in the world the aircraft happened to be and where traffic terminated on the ground. Along these lines, Telesat’s marketing material for its upcoming LEO constellation indicates that although round-trip latency for the space segment is expected to be less than 50 milliseconds, taking account of both the space and ground segments increases this to less than 100 milliseconds. Furthermore, the Federal Communications Commission (FCC) recently provided information on why it doesn’t think SpaceX and can call itself low latency for purpose of getting funding under the bulk of the $16 billion rural broadband initiative. The proposal, released this week, is scheduled for a vote by the five-member commission at its 9th June meeting and suggests that – as intimated above – “the distance between Earth and satellites is not the only factor determining latency” and that “in the absence of a real world example of a non-geostationary orbit satellite network offering mass market fixed service to residential consumers that is able to meet our 100 millisecond round trip latency requirements, Commission staff could not conclude that such an applicant is reasonably capable of meeting our low latency requirements, and so we foreclose such applications”. SpaceX claims round-trip latency of its Starlink network will be less than 50 milliseconds. MEO satellite networks are also in their infancy as far as their use in providing connectivity to business jets goes. SES, which does not yet use its O3b constellation for airborne connectivity, claims that general end-to-end round-trip latency is in the region of 140 milliseconds for data services. Likewise, we do not yet have an accurate read on what average round-trip latency will look like on a business jet connected to a next-gen ATG network such as those being developed by Gogo and SmartSky Networks. The latter, which will launch its network in 2020, one year ahead of Gogo’s new 5G ATG network, claims users will see round-trip latency below 100 milliseconds. Indeed, during various demo flights, the company has indicated that the latency when playing online multiplayer game, Fortnite, typically ranged between 70 and 90 milliseconds. For these reasons, the table below shows only average measured round trip latencies for the two types of aircraft network commonly deployed today: legacy ATG and the GEO networks that have been the staple of satellite-based IFC for some time. For comparison, the table also shows what typical round trip latency looks like for familiar terrestrial networks such as home Internet and ground-based LTE. Table 1: Comparison of Round-Trip Latency Associated with Different Networks

Source: www.experiencetest.net

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

All Change for Pricing and Consumption of Early-Window Content?

As I continue to work on our 2020 update of Valour’s “The Future of In-Flight Entertainment (IFE) Content” report, a number of interesting themes are emerging in the context of what will drive a recovery and, subsequently, the future growth of this sector. I’ll save most of the findings for the report itself, but I did want to share one point of view linked to early-window content (EWC), typically the darling, and most expensive form, of an airline’s IFE offering, because it is becoming increasingly apparent that the way EWC is priced today looks set to change. Yes, COVID-19 has had some bearing on this, but a bigger factor is the changes being made by some of the “Big Five” studios to the way in which brand new blockbusters are served up to and consumed by the masses.

COVID-19 Encouraging Passengers to Use Portable Electronic Devices (PEDs)

As highlighted in another of our recent blogs which speculates the new normal for the passenger experience (https://valourconsultancy.com/re-imagining-the-passenger-experience-in-a-post-coronavirus-world/), when passengers do return to the skies, the expectation is that there will be a greater attention paid to the immediate surroundings, in particular who and what a passenger comes in contact with during a flight. The cleanliness of any communal surface, of which there are plenty in the cabin, will now be under greater scrutiny, and the seatback IFE screen, easily the most popular (and often only) method of accessing and navigating the abundance of IFE content on a long haul flight, is no exception.

In the context of EWC, a worst-case scenario for content service providers (CSPs) and airlines is the new normal causes eyeballs to shift away from the main screen and onto other sources of entertainment, more specifically PEDs, devaluing this content in the process. With passenger traffic substantially down, and the potential for a segment of those that do fly not wanting to use the seatback system, how long can the high cost of EWC stand up to scrutiny? In my opinion, airlines have a couple of options to increase viewership figures; reassure passengers that the IFE screens are clean and safe to use and/or provide an alternative solution that facilitates access to the onboard entertainment, without the need to physically interact with the seatback screen.

In the case of the former, many airlines have been quick to adopt and publicise deep-cleaning processes aimed at going above and beyond standard cabin cleaning to ease passenger concerns. Etihad Airlines, for example, announced it will provide passengers with anti-bacterial wipes upon boarding that can be used to clean the immediate area around the seat. Delta Air Lines, meanwhile, has deployed an enhanced fogging and disinfecting process for all customer touchpoints, including seatback IFE screens. Secondly, several airlines were in the process of deploying technology that allows PED’s to be paired with seatback systems and to be used as a controller. One example is Singapore Airline’s which has installed Panasonic’s eX3 system on its A350 aircraft. The IFE platform can be paired with the airline’s popular companion app to enable, amongst other things, control, and navigation of the embedded screen.

Another option worth mentioning here is Wireless In-Flight Entertainment (W-IFE), which has been deployed by more than 140 airlines according to our Q4 2019 W-IFE tracker data. W-IFE allows passengers to stream most of an airline’s content portfolio directly to their own PEDs. However, streaming of prized EWC is prohibited by the “Big Five” Hollywood studios, driven by lingering fears around piracy. But this stance isn’t perhaps as solid as what it once was and there have been some isolated cases where specific deals have been put in place between an individual CSP and one or more studios to stream EWC over W-IFE. An example is Inflight Dublin, which has struck a deal with some studios to show newer titles on its Everhub W-IFE platform.

Whilst W-IFE adoption has increased significantly in recent years, some may argue that adoption could be more widespread had it not been for the traditional stance of the “Big Five” studios around EWC. But, in what could be a well-timed change of heart for all involved, the deadlock on this issue could be about to break.

Decision Making by Hollywood Studios

In March 2020, Universal Pictures announced it would alter its release strategy for ‘Trolls World Tour’ during the COVID-19 crisis, foregoing a theatrical release and allowing consumers to stream the film direct to home via digital rental. Disney and Warner Bros. have since followed Universal’s lead, announcing they would release ‘Artemis Fowl’ and ‘Scoob!’ to the home streaming market and bypass a cinema release whilst coronavirus social distancing measures were still in place. Universal’s decision led to Trolls World Tour generating over $100 million USD in the first three weeks of its home release. But, most importantly in the context of this blog, foregoing a theatrical release also reduces the “exclusive” nature of this content.

This scenario brings two considerations into play, firstly, studios could now be less protective of EWC and therefore more inclined to permit streaming onto PEDs. Afterall, the exclusivity factor was one of the key reasons to keep this type of content tied to IFE seatback screens. Secondly, we could be about to see a significant reduction in the cost of EWC, driven by airlines being less willing to pay for titles that are already available for consumers to watch at home.

Looking ahead it is unlikely Hollywood will send all titles direct to home but could certainly do so for those films not expected to break box office records. There are potential cost savings attached to these titles that would certainly be welcomed by airlines and CSP’s alike in the current situation. With that comes the prospect of a positive headline in an otherwise gloomy time for the industry.

To find out more about Valour’s IFE Content predictions, including 10 year forecasts out to 2029, please email: william.calvert@valourconsultancy.com to discuss the ‘Future of IFE Content – 2020’ report.

-
[fusion_builder_container hundred_percent="no" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" parallax_speed="0.3" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" overlay_color="" video_preview_image="" border_size="" border_color="" border_style="solid" padding_top="" padding_bottom="" padding_left="" padding_right=""][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" border_position="all" spacing="yes" background_image="" background_repeat="no-repeat" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="small-visibility,medium-visibility,large-visibility" center_content="no" last="no" min_height="" hover_type="none" link=""][fusion_text] As I continue to work on our 2020 update of Valour’s “The Future of In-Flight Entertainment (IFE) Content” report, a number of interesting themes are emerging in the context of what will drive a recovery and, subsequently, the future growth of this sector. I’ll save most of the findings for the report itself, but I did want to share one point of view linked to early-window content (EWC), typically the darling, and most expensive form, of an airline’s IFE offering, because it is becoming increasingly apparent that the way EWC is priced today looks set to change. Yes, COVID-19 has had some bearing on this, but a bigger factor is the changes being made by some of the “Big Five” studios to the way in which brand new blockbusters are served up to and consumed by the masses.

COVID-19 Encouraging Passengers to Use Portable Electronic Devices (PEDs)

As highlighted in another of our recent blogs which speculates the new normal for the passenger experience (https://valourconsultancy.com/re-imagining-the-passenger-experience-in-a-post-coronavirus-world/), when passengers do return to the skies, the expectation is that there will be a greater attention paid to the immediate surroundings, in particular who and what a passenger comes in contact with during a flight. The cleanliness of any communal surface, of which there are plenty in the cabin, will now be under greater scrutiny, and the seatback IFE screen, easily the most popular (and often only) method of accessing and navigating the abundance of IFE content on a long haul flight, is no exception. In the context of EWC, a worst-case scenario for content service providers (CSPs) and airlines is the new normal causes eyeballs to shift away from the main screen and onto other sources of entertainment, more specifically PEDs, devaluing this content in the process. With passenger traffic substantially down, and the potential for a segment of those that do fly not wanting to use the seatback system, how long can the high cost of EWC stand up to scrutiny? In my opinion, airlines have a couple of options to increase viewership figures; reassure passengers that the IFE screens are clean and safe to use and/or provide an alternative solution that facilitates access to the onboard entertainment, without the need to physically interact with the seatback screen. In the case of the former, many airlines have been quick to adopt and publicise deep-cleaning processes aimed at going above and beyond standard cabin cleaning to ease passenger concerns. Etihad Airlines, for example, announced it will provide passengers with anti-bacterial wipes upon boarding that can be used to clean the immediate area around the seat. Delta Air Lines, meanwhile, has deployed an enhanced fogging and disinfecting process for all customer touchpoints, including seatback IFE screens. Secondly, several airlines were in the process of deploying technology that allows PED’s to be paired with seatback systems and to be used as a controller. One example is Singapore Airline’s which has installed Panasonic’s eX3 system on its A350 aircraft. The IFE platform can be paired with the airline’s popular companion app to enable, amongst other things, control, and navigation of the embedded screen. Another option worth mentioning here is Wireless In-Flight Entertainment (W-IFE), which has been deployed by more than 140 airlines according to our Q4 2019 W-IFE tracker data. W-IFE allows passengers to stream most of an airline’s content portfolio directly to their own PEDs. However, streaming of prized EWC is prohibited by the “Big Five” Hollywood studios, driven by lingering fears around piracy. But this stance isn’t perhaps as solid as what it once was and there have been some isolated cases where specific deals have been put in place between an individual CSP and one or more studios to stream EWC over W-IFE. An example is Inflight Dublin, which has struck a deal with some studios to show newer titles on its Everhub W-IFE platform. Whilst W-IFE adoption has increased significantly in recent years, some may argue that adoption could be more widespread had it not been for the traditional stance of the “Big Five” studios around EWC. But, in what could be a well-timed change of heart for all involved, the deadlock on this issue could be about to break.

Decision Making by Hollywood Studios

In March 2020, Universal Pictures announced it would alter its release strategy for ‘Trolls World Tour’ during the COVID-19 crisis, foregoing a theatrical release and allowing consumers to stream the film direct to home via digital rental. Disney and Warner Bros. have since followed Universal’s lead, announcing they would release ‘Artemis Fowl’ and ‘Scoob!’ to the home streaming market and bypass a cinema release whilst coronavirus social distancing measures were still in place. Universal’s decision led to Trolls World Tour generating over $100 million USD in the first three weeks of its home release. But, most importantly in the context of this blog, foregoing a theatrical release also reduces the “exclusive” nature of this content.
This scenario brings two considerations into play, firstly, studios could now be less protective of EWC and therefore more inclined to permit streaming onto PEDs. Afterall, the exclusivity factor was one of the key reasons to keep this type of content tied to IFE seatback screens. Secondly, we could be about to see a significant reduction in the cost of EWC, driven by airlines being less willing to pay for titles that are already available for consumers to watch at home. Looking ahead it is unlikely Hollywood will send all titles direct to home but could certainly do so for those films not expected to break box office records. There are potential cost savings attached to these titles that would certainly be welcomed by airlines and CSP’s alike in the current situation. With that comes the prospect of a positive headline in an otherwise gloomy time for the industry. To find out more about Valour’s IFE Content predictions, including 10 year forecasts out to 2029, please email: william.calvert@valourconsultancy.com to discuss the ‘Future of IFE Content – 2020’ report. [/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Telemedicine services at sea will become a must after Covid-19

Virtual Medical Services

With the abundance of connectivity today, video consultations are becoming the norm. It’s quick, convenient and highly useful.

In the UK, the NHS has been promoting an app which enables online consultations for people to contact their general practitioner doctor (GP), or other required health care profession. This can range from electronic message, phone or video call, or a face-to-face appointment at a later date if required.

The first wave of Covid-19 has been raging for months, and sadly, the pandemic has greatly impacted many peoples’ lives. One of the key battling grounds for diagnosing this virus has been testing and diagnosing it in the early stages, some countries like Germany and South Korea have done a great job of this. The lessons from dealing with this pandemic will lead to many changes in the future. In particular, large data analyses will lead to radical rethinking by governments charged with medical responsibility. In countries where there is a free-market health industry may take some time to catch up because of lack of central responsibility.

One such change in the maritime industry will be the inclusion of telemedicine services. The shortage of skilled medical workers and a lack of healthcare infrastructure at sea will be evaluated thoroughly in the coming months. We can expect a much larger part to be played by AI in initial diagnosis and preventative medicine. Seamen may be required to wear wrist health monitors (similar to fitbits). Cruise ships, even those who normally carry medical staff, will need to increase their vigilance to prevent another industry shut-down which is likely to last six months or more. Centralised air-conditioning systems will need to be re-evaluated as will many other shared facilities. Many Cruise operators already operate smart-token systems allowing access and monitoring of movement of passengers. It would not be out of order if these tokens also recorded activity and basic health parameters, alerting a medical AI system to any potential problems.

Providing crew welfare services like the ability for seafarers to communicate with their families and friends is now a must. Providing healthcare services to crew will also become a major factor soon. Telemedicine offers practical and valuable solution to address this matter. A potentially ill seafarer can be examined via videolink without a nurse or doctor being there in person providing simple variables such as temperature, heart rate, respiration rate, blood pressure and blood sugar and blood oxygen levels can be provided automatically. These are all well within the bounds of current technology. These are already available to many land-based patients in this new world of social distancing after lockdowns will be ended in most countries soon. A medical professional or team with an AI sidekick will likely be able to cover a large number of vessels per fleet, providing infections or outbreaks are not too great.

From a crew member’s perspective, one of the biggest concerns of an illness is the uncertainty of what it is and what it could lead to. Alleviating these worries will be a plus for crew wellbeing and will go a long way meet new maritime labour regulations that are soon to be promoted by the IMO/STCW labour regulations and probably the EU too.

We will likely see a host of connectivity service providers, such as Marlink and Inmarsat offering such value-added services in addition to its connectivity ones. From designs already available, some cost effective basic medical equipment will be required with an interface for the patient or administer and a camera for recording purposes. Basic medical equipment could include a blood pressure monitor, electro cardiograph, pulse oximeter, ultrasound device or thermometer. The range of equipment for the customer can easily be adjusted based seafarers’ medical histories and their likely conditions. It is unlikely we will see intensive care units or beds onboard a vessel, or breathing apparatus. If a seafarer does suffer from an acute Covid-19 attack, they would likely be flown off the vessel to a medical facility. By far the most common health emergency for sea-farers is accident, heart attack and stroke.

Valour Consultancy expects nearly 60-70 per cent of commercial vessels with VSAT to adopt telemedicine services in the next two to three years.

-
[fusion_builder_container hundred_percent="no" hundred_percent_height="no" hundred_percent_height_scroll="no" hundred_percent_height_center_content="yes" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" status="published" publish_date="" class="" id="" border_size="" border_color="" border_style="solid" margin_top="" margin_bottom="" padding_top="" padding_right="" padding_bottom="" padding_left="" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" enable_mobile="no" parallax_speed="0.3" background_blend_mode="none" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" video_preview_image="" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0"][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" spacing="" center_content="no" link="" target="_self" min_height="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" hover_type="none" border_size="0" border_color="" border_style="solid" border_position="all" border_radius="" box_shadow="no" dimension_box_shadow="" box_shadow_blur="0" box_shadow_spread="0" box_shadow_color="" box_shadow_style="" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="" margin_bottom="" background_type="single" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_image_id="" background_position="left top" background_repeat="no-repeat" background_blend_mode="none" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset="" filter_type="regular" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0" last="no"][fusion_imageframe image_id="5396|medium" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="none" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]https://valourconsultancy.com/wp-content/uploads/2020/05/Telemedicine-300x123.png[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text columns="" column_min_width="" column_spacing="" rule_style="default" rule_size="" rule_color="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""] With the abundance of connectivity today, video consultations are becoming the norm. It’s quick, convenient and highly useful. In the UK, the NHS has been promoting an app which enables online consultations for people to contact their general practitioner doctor (GP), or other required health care profession. This can range from electronic message, phone or video call, or a face-to-face appointment at a later date if required. The first wave of Covid-19 has been raging for months, and sadly, the pandemic has greatly impacted many peoples’ lives. One of the key battling grounds for diagnosing this virus has been testing and diagnosing it in the early stages, some countries like Germany and South Korea have done a great job of this. The lessons from dealing with this pandemic will lead to many changes in the future. In particular, large data analyses will lead to radical rethinking by governments charged with medical responsibility. In countries where there is a free-market health industry may take some time to catch up because of lack of central responsibility. One such change in the maritime industry will be the inclusion of telemedicine services. The shortage of skilled medical workers and a lack of healthcare infrastructure at sea will be evaluated thoroughly in the coming months. We can expect a much larger part to be played by AI in initial diagnosis and preventative medicine. Seamen may be required to wear wrist health monitors (similar to fitbits). Cruise ships, even those who normally carry medical staff, will need to increase their vigilance to prevent another industry shut-down which is likely to last six months or more. Centralised air-conditioning systems will need to be re-evaluated as will many other shared facilities. Many Cruise operators already operate smart-token systems allowing access and monitoring of movement of passengers. It would not be out of order if these tokens also recorded activity and basic health parameters, alerting a medical AI system to any potential problems. Providing crew welfare services like the ability for seafarers to communicate with their families and friends is now a must. Providing healthcare services to crew will also become a major factor soon. Telemedicine offers practical and valuable solution to address this matter. A potentially ill seafarer can be examined via videolink without a nurse or doctor being there in person providing simple variables such as temperature, heart rate, respiration rate, blood pressure and blood sugar and blood oxygen levels can be provided automatically. These are all well within the bounds of current technology. These are already available to many land-based patients in this new world of social distancing after lockdowns will be ended in most countries soon. A medical professional or team with an AI sidekick will likely be able to cover a large number of vessels per fleet, providing infections or outbreaks are not too great. From a crew member’s perspective, one of the biggest concerns of an illness is the uncertainty of what it is and what it could lead to. Alleviating these worries will be a plus for crew wellbeing and will go a long way meet new maritime labour regulations that are soon to be promoted by the IMO/STCW labour regulations and probably the EU too. We will likely see a host of connectivity service providers, such as Marlink and Inmarsat offering such value-added services in addition to its connectivity ones. From designs already available, some cost effective basic medical equipment will be required with an interface for the patient or administer and a camera for recording purposes. Basic medical equipment could include a blood pressure monitor, electro cardiograph, pulse oximeter, ultrasound device or thermometer. The range of equipment for the customer can easily be adjusted based seafarers’ medical histories and their likely conditions. It is unlikely we will see intensive care units or beds onboard a vessel, or breathing apparatus. If a seafarer does suffer from an acute Covid-19 attack, they would likely be flown off the vessel to a medical facility. By far the most common health emergency for sea-farers is accident, heart attack and stroke. Valour Consultancy expects nearly 60-70 per cent of commercial vessels with VSAT to adopt telemedicine services in the next two to three years. [/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

OneWeb Bankruptcy Only Intensifies Battle for ESA Supremacy

On March 27th 2020, London-based satellite firm, OneWeb filed for Chapter 11 bankruptcy protection in the United States, and in doing so surprised some and merely confirmed what others had seen coming for some time. Much has been written, both pre- and post-bankruptcy, around the challenges associated with making the LEO business model work and, more specifically what was wrong with OneWeb’s approach. This post won’t be adding to that commentary. I’ve instead opted to focus on the potential impact to those involved in the production of the next generation of antennas, which rely heavily on LEO constellations succeeding.

Right now, there is a race (perhaps better labelled a marathon at this point) been run amongst a sizeable number of hardware manufacturers to build a new generation of fully electronically steerable antennas (ESA’s), primarily to bring the best out of NGSO satellite constellations. I respectfully refer to this as a marathon rather than a sprint because developing such a solution has proven costly and complex, and despite years of rhetoric, an ESA which hits all the right notes remains elusive. Having been fortunate enough to meet with a number of the vendors currently developing ESA’s, there can be no doubt the industry is as close as it has ever been to bringing a commercially ready product to market. But there is also still some way to go, and for most, continued development (and ultimately getting a product to market) depends on further investment and agreements, primarily with NGSO operators like OneWeb.

The significance of OneWeb in the context of this story lies mostly in the fact it had progressed as far as actually sending some satellites into orbit. Whilst those in the know will likely shake their heads reading this, OneWeb’s LEO constellation was perceived by many as one of the few that would eventually go on to succeed; perhaps symbolic of how much uncertainty and confusion there is linked to LEO. This “front runner” status and broad target market made OneWeb an attractive target for any ESA manufacturer looking to raise its profile through association. Notable examples include Istropic Systems, which in 2018 announced it was to develop an ultra-low-cost consumer broadband terminal for OneWeb primed for various end-user applications, and US-based Wafer, a company self-funded by OneWeb founder, Greg Wyler, which was reported to be working toward delivering a low-cost ESA for the LEO network this year.

The need to remain relevant in the seemingly inevitable era of LEO isn’t reserved solely for ESA vendors. In March 2020, Intellian and Cobham signed contracts to manufacture “more traditional” parabolic user terminals destined for OneWeb’s prospective enterprise, cellular backhaul, maritime and government clients. OneWeb’s bankruptcy will no doubt have repercussions here too but Intellian and Cobham are arguably better placed to cushion the blow by being able to fall back on existing GEO business segments, most notably maritime connectivity where the two have a combined 70 per cent share of active installed VSAT terminals.

Furthermore, despite what some may say, the current cost and fundamental physics associated with ESA’s dictates that the business case for them falls apart without NGSO constellations. This isn’t to say collaboration between ESA manufacturers and GEO operators is to be disregarded. Inmarsat, Intelsat and Viasat are just three GEO incumbents known to active in the ESA segment today. The former is understood to be keeping a close eye on ESA developments as part of continued enhancements to its GX network, which will include two new payloads in Highly Elliptical Orbit (HEO) from 2022. High up on that list is a collaboration between Safran and Jet-Talk (a joint venture between ST Electronics and Satixfy) which are forging ahead with development of an ARINC 792 compliant ESA that could become the first ESA antenna certified for GX. Intelsat, meanwhile, has brought Kymeta on as a preferred supplier of Communications-on-the-Move (COTM) terminals as part of its FlexMove services.

But the point here is that success will not come by competing with existing antenna technology in the GEO arena alone, especially in fixed terminal market where incumbent technology is more cost effective today. The commercial launch of large-scale LEO constellations that lend themselves to ESA’s are an essential ingredient in the mix. It can be argued that OneWeb’s fall pushes back the already overdue timeframe for a commercially ready LEO constellation becoming active by at least a year or more.

Clearly then, the loss of OneWeb can only be seen as a set-back for those with a stake in the development of ESA’s and the situation is only made worse by the current stance of the other current major player, SpaceX to manufacture terminals in-house. But, as touched upon briefly above, there are positives. In the short term, a small number of solutions will be deployed in GEO mobility applications, specifically the military sector and aviation, where price sensitivity is minimal, reliability is crucial, and discretion is king. There are also other operators still pushing ahead with commitments to build NGSO constellations, most notably; SES with its O3b mPOWER MEO constellation, Amazon (with it Kuiper project), Telesat and China’s proposed Hongyun and Hongyan constellations. There could also yet be a reincarnation of OneWeb that goes on to succeed where v1.0 failed – we’ve seen that before.

But what should become clear is that there is now a greater pressure on ESA manufacturers to build confidence and stand out from the crowd by forging partnerships with GEO, MEO and LEO operators, as well as influential end-users such as government departments. None of which will happen without possessing the technology to back up the rhetoric.

Linked to the above, Isotropic Systems continues to work toward a 2022 launch of its terminal designed for SES’ O3b mPOWER constellation, having been chosen as a preferred supplier, along with ALCAN and Viasat. Similarly, Gilat Satellite Networks and Ball Aerospace are just two of the vendors to carry out ESA demonstrations with Telesat’s Phase 1 LEO satellite. The former performed what is thought to be the first in-flight test of an ESA over a NGSO satellite. Telesat has also doubled down on its intentions to build a LEO constellation of 300 satellites in a March 2020 investor call. Finally, in May 2019 Boeing Phantom Works announced it will deploy its in-house built ESA on new U.S. Navy MQ-25 drones as part of a wider military contract it had won.

In summary, the fall of OneWeb by no means kills off the ESA story. Far from it. But from my point of view, what it does do is both delay the arrival of commercially ready solutions hitting the market and speed up the rate at which manufacturers will drop out of the ESA race. The intensity has been turned up a notch and what we should now see is the cream to rise to the top.

-
[fusion_builder_container hundred_percent="no" hundred_percent_height="no" hundred_percent_height_scroll="no" hundred_percent_height_center_content="yes" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" status="published" publish_date="" class="" id="" border_size="" border_color="" border_style="solid" margin_top="" margin_bottom="" padding_top="" padding_right="" padding_bottom="" padding_left="" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" enable_mobile="no" parallax_speed="0.3" background_blend_mode="none" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" video_preview_image="" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0"][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" spacing="" center_content="no" link="" target="_self" min_height="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" hover_type="none" border_size="0" border_color="" border_style="solid" border_position="all" border_radius="" box_shadow="no" dimension_box_shadow="" box_shadow_blur="0" box_shadow_spread="0" box_shadow_color="" box_shadow_style="" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="" margin_bottom="" background_type="single" gradient_start_color="" gradient_end_color="" gradient_start_position="0" gradient_end_position="100" gradient_type="linear" radial_direction="center" linear_angle="180" background_color="" background_image="" background_image_id="" background_position="left top" background_repeat="no-repeat" background_blend_mode="none" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset="" filter_type="regular" filter_hue="0" filter_saturation="100" filter_brightness="100" filter_contrast="100" filter_invert="0" filter_sepia="0" filter_opacity="100" filter_blur="0" filter_hue_hover="0" filter_saturation_hover="100" filter_brightness_hover="100" filter_contrast_hover="100" filter_invert_hover="0" filter_sepia_hover="0" filter_opacity_hover="100" filter_blur_hover="0" last="no"][fusion_imageframe image_id="5384|full" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="none" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]https://valourconsultancy.com/wp-content/uploads/2020/05/international-space-station-1176518_1920-e1588731887331.jpg[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text columns="" column_min_width="" column_spacing="" rule_style="default" rule_size="" rule_color="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""] On March 27th 2020, London-based satellite firm, OneWeb filed for Chapter 11 bankruptcy protection in the United States, and in doing so surprised some and merely confirmed what others had seen coming for some time. Much has been written, both pre- and post-bankruptcy, around the challenges associated with making the LEO business model work and, more specifically what was wrong with OneWeb’s approach. This post won’t be adding to that commentary. I’ve instead opted to focus on the potential impact to those involved in the production of the next generation of antennas, which rely heavily on LEO constellations succeeding. Right now, there is a race (perhaps better labelled a marathon at this point) been run amongst a sizeable number of hardware manufacturers to build a new generation of fully electronically steerable antennas (ESA’s), primarily to bring the best out of NGSO satellite constellations. I respectfully refer to this as a marathon rather than a sprint because developing such a solution has proven costly and complex, and despite years of rhetoric, an ESA which hits all the right notes remains elusive. Having been fortunate enough to meet with a number of the vendors currently developing ESA’s, there can be no doubt the industry is as close as it has ever been to bringing a commercially ready product to market. But there is also still some way to go, and for most, continued development (and ultimately getting a product to market) depends on further investment and agreements, primarily with NGSO operators like OneWeb. The significance of OneWeb in the context of this story lies mostly in the fact it had progressed as far as actually sending some satellites into orbit. Whilst those in the know will likely shake their heads reading this, OneWeb’s LEO constellation was perceived by many as one of the few that would eventually go on to succeed; perhaps symbolic of how much uncertainty and confusion there is linked to LEO. This “front runner” status and broad target market made OneWeb an attractive target for any ESA manufacturer looking to raise its profile through association. Notable examples include Istropic Systems, which in 2018 announced it was to develop an ultra-low-cost consumer broadband terminal for OneWeb primed for various end-user applications, and US-based Wafer, a company self-funded by OneWeb founder, Greg Wyler, which was reported to be working toward delivering a low-cost ESA for the LEO network this year. The need to remain relevant in the seemingly inevitable era of LEO isn’t reserved solely for ESA vendors. In March 2020, Intellian and Cobham signed contracts to manufacture “more traditional” parabolic user terminals destined for OneWeb’s prospective enterprise, cellular backhaul, maritime and government clients. OneWeb’s bankruptcy will no doubt have repercussions here too but Intellian and Cobham are arguably better placed to cushion the blow by being able to fall back on existing GEO business segments, most notably maritime connectivity where the two have a combined 70 per cent share of active installed VSAT terminals. Furthermore, despite what some may say, the current cost and fundamental physics associated with ESA’s dictates that the business case for them falls apart without NGSO constellations. This isn’t to say collaboration between ESA manufacturers and GEO operators is to be disregarded. Inmarsat, Intelsat and Viasat are just three GEO incumbents known to active in the ESA segment today. The former is understood to be keeping a close eye on ESA developments as part of continued enhancements to its GX network, which will include two new payloads in Highly Elliptical Orbit (HEO) from 2022. High up on that list is a collaboration between Safran and Jet-Talk (a joint venture between ST Electronics and Satixfy) which are forging ahead with development of an ARINC 792 compliant ESA that could become the first ESA antenna certified for GX. Intelsat, meanwhile, has brought Kymeta on as a preferred supplier of Communications-on-the-Move (COTM) terminals as part of its FlexMove services. But the point here is that success will not come by competing with existing antenna technology in the GEO arena alone, especially in fixed terminal market where incumbent technology is more cost effective today. The commercial launch of large-scale LEO constellations that lend themselves to ESA’s are an essential ingredient in the mix. It can be argued that OneWeb’s fall pushes back the already overdue timeframe for a commercially ready LEO constellation becoming active by at least a year or more. Clearly then, the loss of OneWeb can only be seen as a set-back for those with a stake in the development of ESA’s and the situation is only made worse by the current stance of the other current major player, SpaceX to manufacture terminals in-house. But, as touched upon briefly above, there are positives. In the short term, a small number of solutions will be deployed in GEO mobility applications, specifically the military sector and aviation, where price sensitivity is minimal, reliability is crucial, and discretion is king. There are also other operators still pushing ahead with commitments to build NGSO constellations, most notably; SES with its O3b mPOWER MEO constellation, Amazon (with it Kuiper project), Telesat and China’s proposed Hongyun and Hongyan constellations. There could also yet be a reincarnation of OneWeb that goes on to succeed where v1.0 failed – we’ve seen that before. But what should become clear is that there is now a greater pressure on ESA manufacturers to build confidence and stand out from the crowd by forging partnerships with GEO, MEO and LEO operators, as well as influential end-users such as government departments. None of which will happen without possessing the technology to back up the rhetoric. Linked to the above, Isotropic Systems continues to work toward a 2022 launch of its terminal designed for SES’ O3b mPOWER constellation, having been chosen as a preferred supplier, along with ALCAN and Viasat. Similarly, Gilat Satellite Networks and Ball Aerospace are just two of the vendors to carry out ESA demonstrations with Telesat’s Phase 1 LEO satellite. The former performed what is thought to be the first in-flight test of an ESA over a NGSO satellite. Telesat has also doubled down on its intentions to build a LEO constellation of 300 satellites in a March 2020 investor call. Finally, in May 2019 Boeing Phantom Works announced it will deploy its in-house built ESA on new U.S. Navy MQ-25 drones as part of a wider military contract it had won. In summary, the fall of OneWeb by no means kills off the ESA story. Far from it. But from my point of view, what it does do is both delay the arrival of commercially ready solutions hitting the market and speed up the rate at which manufacturers will drop out of the ESA race. The intensity has been turned up a notch and what we should now see is the cream to rise to the top. [/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]