FILTER POSTS SHOW ALL AVIATION MARITIME
FILTER POSTS SHOW ALL AVIATION MARITIME

More Compelling Use Cases Needed to Stimulate Next Wave of IFC Adoption

Earlier this year, I wrote an article which spoke about the industry entering a phase of action rather than talk as various service providers set to work on backlogs built up in recent years. This process began as 2017 came to a close and has continued throughout 2018. A notable and perhaps worrying side effect has been a relative lack of new IFC announcements compared to previous years. With 2019 predicted to be another quiet year as far as announcements go, the key question is why the slowdown and what is needed to bring back momentum?

The majority of early adopters and what might be considered “low hanging fruit” are already offering, or are in the process of rolling out IFC services. According to our quarterly IFC tracker, 91 airlines offered passenger Wi-Fi at the end of June 2018, with many more under contract. There are a significant number of commercial airlines still to target, but the pool of unconnected aircraft is becoming increasingly concentrated with operators that are unconvinced of the business case for IFC and/or cannot afford the upfront CAPEX and subsequent OPEX.

Swaying those that remain unconvinced would perhaps be easier with strong user-cases, but publicly available compelling examples exist today. It is reasonable to assume continued challenges around service consistency, passenger uptake and cost are a factor behind the lack of positive headlines. Average IFC take-rates continue to hover around 5-8% when a paid model is in place, which most airlines feel they must implement to recoup the costs associated with high ongoing service fees. This, in turn, dampens potential ancillary revenue generation from the sale of session passes. For those passengers willing to pay, service consistency is often not where it should be, compounding the issue and causing some airlines to shy away from marketing their IFC service to passengers. Not necessarily the headlines prospective airline customers want to hear.

Of the success stories that have gained traction, the case which arguably stands out the most is Jetblue’s free service with Viasat, mostly because it is one of a few that is endorsed by the airline, passengers and the industry. It also demonstrates how the airline monetised IFC, in this case through its (now scaled back) partnership with Amazon.

With new announcements seemingly on pause, there is a need for more success stories, but first airlines must define what monetising IFC looks like to them and build a strategy around that. It can be easy to assume the answer is for airlines to offer Wi-Fi for free to all passengers. Indeed, IFC take-rates tend to jump to up to around 40% when doing so. But sponsors are proving hard to convince (discussed below) and even if this weren’t the case, the economics of the freemium model doesn’t always stack up today. IFC services would become unusable or cost the airline a small fortune if every passenger on board was to connect. Such a situation would only add more strain on those in the middle layer of the IFC value chain.

Many airlines, therefore, face the decision of charging passengers to access the Internet or absorbing the cost associated with a free service. A tough one to explain to stakeholders looking for a quick return on investment (ROI) – especially now the price of jet fuel is once again marching northward. But airlines are finding ways to limit losses and at the same time find alternative ways to justify ROI beyond simply selling session passes. Some of these approaches are discussed below:

Retaining Top-Tier Customers

Many carriers offer free IFC to frequent and top-tier flyers as a value-added service. In this case, the cost of providing the free service is justified by passenger satisfaction metrics and repeat business.

Increase or Maintain Ticket Sales

More carriers, such as All Nippon Airways, NOK Air and Japan Airlines, offer free Wi-Fi specifically on short-haul/domestic flights to stand out in increasingly competitive local markets. In these circumstances, the cost of providing a free service is assumed to be absorbed in ticket sales.

Tiered Pricing

Where completely free services cannot be accommodated, airlines are deploying tiered packages that allow passengers to access low-bandwidth applications, such as messaging apps, or a “slower” connection for free. Charges are applied to access faster services. This model is similar to what we see on the ground, in hotels for example, and ensures passengers can still surf for free whilst costly data hogs are charged accordingly for using more data.

Sponsorship/Advertising Revenue

An ideal situation for airlines is generating a revenue stream from advertising or sponsorship. This is a path most airlines would like to take, however, very few have made this work. Brands will only come to the fore if they feel there will be enough eyeballs on the screen and this is challenging for airlines with small fleets and for those that achieve IFC take-rates in the low single-digits. Ironically, sponsorship typically frees up airlines to offer a free service in some capacity, increasing take rates and making it an even more attractive offer for brands. But getting over the initial hurdle of demonstrating the ROI to potential advertisers and sponsors is a difficult task.

Cost Savings Through Operational Efficiencies

Some airlines are beginning to offset the cost of providing IFC by moving operational data, such as real-time weather updates, maintenance data and real-time payment verification, over the passenger connectivity pipe. Similarly, crew devices are being connected so that CRM databases can be mined in real-time to enhance the passenger experience and leave a lasting impression. Despite much commentary around the large operational savings that can be made through IFC, few airlines are advanced in their approach to the connected aircraft. But that will change over time and we expect the nose-to-tail story to increasingly resonate – especially amongst notoriously cost-conscious LCCs. Any IFC system that can promise significant savings, or ‘pay for itself’ will almost certainly be of interest.

-
[fusion_builder_container hundred_percent="no" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" parallax_speed="0.3" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" overlay_color="" video_preview_image="" border_size="" border_color="" border_style="solid" padding_top="" padding_bottom="" padding_left="" padding_right=""][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" border_position="all" spacing="yes" background_image="" background_repeat="no-repeat" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="small-visibility,medium-visibility,large-visibility" center_content="no" last="no" min_height="" hover_type="none" link=""][fusion_imageframe image_id="4858|full" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="center" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]http://217.199.187.200/valourconsultancy.com/wp-content/uploads/2018/09/plane-841441_1280-min-1024x680-1.jpg[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text]Earlier this year, I wrote an article which spoke about the industry entering a phase of action rather than talk as various service providers set to work on backlogs built up in recent years. This process began as 2017 came to a close and has continued throughout 2018. A notable and perhaps worrying side effect has been a relative lack of new IFC announcements compared to previous years. With 2019 predicted to be another quiet year as far as announcements go, the key question is why the slowdown and what is needed to bring back momentum? The majority of early adopters and what might be considered “low hanging fruit” are already offering, or are in the process of rolling out IFC services. According to our quarterly IFC tracker, 91 airlines offered passenger Wi-Fi at the end of June 2018, with many more under contract. There are a significant number of commercial airlines still to target, but the pool of unconnected aircraft is becoming increasingly concentrated with operators that are unconvinced of the business case for IFC and/or cannot afford the upfront CAPEX and subsequent OPEX. Swaying those that remain unconvinced would perhaps be easier with strong user-cases, but publicly available compelling examples exist today. It is reasonable to assume continued challenges around service consistency, passenger uptake and cost are a factor behind the lack of positive headlines. Average IFC take-rates continue to hover around 5-8% when a paid model is in place, which most airlines feel they must implement to recoup the costs associated with high ongoing service fees. This, in turn, dampens potential ancillary revenue generation from the sale of session passes. For those passengers willing to pay, service consistency is often not where it should be, compounding the issue and causing some airlines to shy away from marketing their IFC service to passengers. Not necessarily the headlines prospective airline customers want to hear. Of the success stories that have gained traction, the case which arguably stands out the most is Jetblue’s free service with Viasat, mostly because it is one of a few that is endorsed by the airline, passengers and the industry. It also demonstrates how the airline monetised IFC, in this case through its (now scaled back) partnership with Amazon. With new announcements seemingly on pause, there is a need for more success stories, but first airlines must define what monetising IFC looks like to them and build a strategy around that. It can be easy to assume the answer is for airlines to offer Wi-Fi for free to all passengers. Indeed, IFC take-rates tend to jump to up to around 40% when doing so. But sponsors are proving hard to convince (discussed below) and even if this weren’t the case, the economics of the freemium model doesn’t always stack up today. IFC services would become unusable or cost the airline a small fortune if every passenger on board was to connect. Such a situation would only add more strain on those in the middle layer of the IFC value chain. Many airlines, therefore, face the decision of charging passengers to access the Internet or absorbing the cost associated with a free service. A tough one to explain to stakeholders looking for a quick return on investment (ROI) – especially now the price of jet fuel is once again marching northward. But airlines are finding ways to limit losses and at the same time find alternative ways to justify ROI beyond simply selling session passes. Some of these approaches are discussed below: Retaining Top-Tier Customers Many carriers offer free IFC to frequent and top-tier flyers as a value-added service. In this case, the cost of providing the free service is justified by passenger satisfaction metrics and repeat business. Increase or Maintain Ticket Sales More carriers, such as All Nippon Airways, NOK Air and Japan Airlines, offer free Wi-Fi specifically on short-haul/domestic flights to stand out in increasingly competitive local markets. In these circumstances, the cost of providing a free service is assumed to be absorbed in ticket sales. Tiered Pricing Where completely free services cannot be accommodated, airlines are deploying tiered packages that allow passengers to access low-bandwidth applications, such as messaging apps, or a “slower” connection for free. Charges are applied to access faster services. This model is similar to what we see on the ground, in hotels for example, and ensures passengers can still surf for free whilst costly data hogs are charged accordingly for using more data. Sponsorship/Advertising Revenue An ideal situation for airlines is generating a revenue stream from advertising or sponsorship. This is a path most airlines would like to take, however, very few have made this work. Brands will only come to the fore if they feel there will be enough eyeballs on the screen and this is challenging for airlines with small fleets and for those that achieve IFC take-rates in the low single-digits. Ironically, sponsorship typically frees up airlines to offer a free service in some capacity, increasing take rates and making it an even more attractive offer for brands. But getting over the initial hurdle of demonstrating the ROI to potential advertisers and sponsors is a difficult task. Cost Savings Through Operational Efficiencies Some airlines are beginning to offset the cost of providing IFC by moving operational data, such as real-time weather updates, maintenance data and real-time payment verification, over the passenger connectivity pipe. Similarly, crew devices are being connected so that CRM databases can be mined in real-time to enhance the passenger experience and leave a lasting impression. Despite much commentary around the large operational savings that can be made through IFC, few airlines are advanced in their approach to the connected aircraft. But that will change over time and we expect the nose-to-tail story to increasingly resonate – especially amongst notoriously cost-conscious LCCs. Any IFC system that can promise significant savings, or ‘pay for itself’ will almost certainly be of interest.[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

The Market for In-Flight Connectivity on VIP and Business Aircraft

Last month, Valour Consultancy released its latest analysis of the market for in-flight connectivity on VIP and business aircraft. The study draws upon our considerable expertise in analysing the adoption of in-flight connectivity (IFC) in commercial aviation and is the result of a rigorous primary research phase consisting of numerous interviews with key players from across the industry.

The report finds that, globally, there were 19,131 IFC systems on VIP and business aircraft at the end of 2016. L-band was by far and away the most dominant connectivity technology with cumulative connections representing 75% of the total. A large proportion of this is accounted for by Iridium, whose systems support in-flight satellite phone operations on almost 10,000 aircraft. The remainder of L-band connections are accounted for by Inmarsat, which has seen adoption of SwiftBroadband (SBB) pick up rapidly in recent years.

Uptake of Gogo’s Air-to-Ground (ATG) options has been similarly brisk in recent years. By the end 2013, there were 2,047 terminals connected to the Gogo Biz network. This had increased to 4,172 three years later.

ATG and L-band both have room for further growth in coming years, too.

With respect to ATG, there will likely be continued interest in Gogo’s solutions over the course of the forecast period (2016 to 2026), especially now that the company is close to commercial launch of Gogo Biz 4G and plans to have its next-generation ATG network, which will offer peak network speeds of more than 100 Mbps, up and running by 2018.

When you add SmartSky Networks and its 4G network into the mix, as well as the Inmarsat European Aviation Network (EAN), it is apparent that there remains plenty of potential for ATG technology. Though it is yet to be officially confirmed whether the EAN will be used by the business aviation industry, there appears to be consensus that it would work very well on board private aircraft.

While Inmarsat is reportedly seeing a lot of interest from operators looking to upgrade from lower-bandwidth IFC systems to Jet ConneX, the company is also working on increasing the performance of the L-band technology used for SBB. Iridium, meanwhile, is currently prepping for the launch of the second batch of Iridium NEXT satellites, which are due for lift off on the 25th June. Upon completion of the constellation in 2018 and the start of commercial service one year later, the so-called Iridium Certus solution will likely find favour among operators of those small- and medium-sized business jets less suited to the fitment of bulky radomes.

Adoption of Ku-band technology on VIP and business aircraft appears to have an equally rosy future – a view presumably shared by new market entrants, Panasonic Avionics and Global Eagle, as well as Gogo, which recently announced its first business aviation customer for 2Ku. Right now, there are some 500 Ku-band systems in operation on VIP and business aircraft and the vast majority of these are accounted for by ViaSat and its Yonder system (although it’s no longer referred to as Yonder, to shift the focus towards the ViaSat brand). Panasonic and Global Eagle representatives have not been shy in admitting that they are gunning for ViaSat in this market.

However, ViaSat appears content to focus on ensuring existing clients migrate to its Ka-band technology – a sensible strategy given the ongoing success of its Exede in the Air product in commercial aviation. Now that ViaSat-2 has finally launched after several setbacks, there will soon be a considerable amount of additional Ka-band capacity for business jets flying between North America and Europe. Additionally, the company says that it will have its three planned ViaSat-3 satellites operational around 2020 making ViaSat the only rival provider of global Ka-band capacity to Inmarsat.

By 2020, ViaSat could have some catching up to do if the take up of Jet ConneX is anything to go by. Having debuted in November 2016, there were an estimated 30 aircraft fitted with the solution by the turn of the year. Inmarsat has previously stated that it expects to see 150 Jet ConneX-equipped aircraft by the end of 2017 and has a goal of connecting 3,000 jets by 2020 (although it is apparently now upgrading its forecasts).

Overall, we are forecasting that by the end of 2026, there will be 37,710 IFC systems installed on VIP and business aircraft – almost double the current total. The reader should, of course, note that these numbers do not refer to the number of aircraft with IFC. In fact, it is estimated that today, around 1,000 to 2,000 aircraft with Iridium satellite phones also make use of Inmarsat’s SBB network. Likewise, Gogo has publicly reported 4,172 connections to its Gogo Biz service and acts as the service provider for 5,286 installed Iridium terminals as well as 214 installed SBB terminals (a total of 9,972 connections – all accurate and up to date at the end of 2016). However, the firm delivers services to 7,400 aircraft implying many are flying with more than one system installed.

The following factors have driven interest in IFC on VIP and business aircraft and will continue to do so in future:

  • Owners of business aircraft fitted with connectivity equipment some time ago will be keener to take advantage of more recent advances in satellite and hardware technology.
  • The ‘Uber-isation’ of the private aviation industry is increasingly being talked about and with e-commerce replacing traditional methods of sourcing and booking a business jet, easy comparisons between different operators and aircraft means that customers can see where one aircraft has IFC and another doesn’t. This transparency will further encourage operators to improve their offerings.
  • As well as the increased comparison between business jets and their features because of new e-commerce initiatives, business aviation is having to compete with the rapid adoption of IFC in commercial air transport perhaps making a first class connected seat more attractive than a private jet with no in-flight Wi-Fi.
  • Competition is hotting up with the likes of Global Eagle, Panasonic Avionics, BizJetMobile and SmartSky Networks all new to the market or preparing to enter.
  • The launch of several new high throughput satellites (HTS) and the prospect of cheaper capacity and faster services is having an extremely positive effect on the market with service providers having inked several new deals in recent years.
  • The connected aircraft and e-Enablement is beginning to resonate more and more as a way to drive operational efficiencies and help underpin the IFC business case.

Some of the remaining challenges to more widespread adoption of IFC on VIP and business aircraft are as follows.

  • Production of new business jets has stagnated and consequently reduced the possibility of line-fit offerability deals for many IFC providers and limited their opportunities for growth.
  • Fitting an aircraft with a sizeable antenna to enable IFC impacts aerodynamics and increases fuel burn, thereby driving up operating costs. Additionally, many smaller business jets are currently unable to accommodate larger Ku- and Ka-band antennas on their fuselages.
  • Current generation Ku-/Ka-band systems lock operators into the service provider (so the hardware is not provider agnostic) and should there be a desire to switch, a very expensive refit ensues.
  • While commercial airlines tend to fly set routes at specific times of day, business jets are more sporadic. One day they may be flying domestically in the US, the next they may be making their way to China or Russia. This uncertainty means high-bandwidth IFC solutions that offer global coverage – which are currently few in number – are perhaps more compelling.
  • Many in the industry are concerned that as we move towards realising the vision of the fully-connected aircraft, the opportunity for cyberattacks will increase. The main worry seems to be that such systems will allow wrongdoers to control aircraft and manipulate commands issued to the aircraft. It should be noted that flight control systems are purposefully isolated from all other communications networks on-board the aircraft.
  • Selling an IFC service based on deployment events that have not happened is a significant challenge and operators understandably give much more credit to satellite assets in space than on paper. Further, a delay to the launch of any service has the potential to scare prospective customers away or send them into the arms of rivals. Unfortunately, such delays are all too commonplace for many much-anticipated IFC solutions.

Published in May 2017, “The Market for In-Flight Connectivity on VIP and Business Aircraft” provides an unrivalled insight and analysis into the current and future deployment of IFC on these aircraft. The number of IFC systems installed in 2016 is quantified with forecasts out to 2026 and data is segmented by fitment type, aircraft size, frequency band and geographic region with a full qualitative discussion of the key trends at play in support of this. The report also sizes the market for both service revenues and key enabling hardware, in addition to market share estimates for service providers and capacity providers. A chapter profiling key players is presented, too.

-
[fusion_builder_container hundred_percent="no" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" parallax_speed="0.3" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" overlay_color="" video_preview_image="" border_size="" border_color="" border_style="solid" padding_top="" padding_bottom="" padding_left="" padding_right=""][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" border_position="all" spacing="yes" background_image="" background_repeat="no-repeat" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="small-visibility,medium-visibility,large-visibility" center_content="no" last="no" min_height="" hover_type="none" link=""][fusion_imageframe image_id="4980|full" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="center" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]http://217.199.187.200/valourconsultancy.com/wp-content/uploads/2017/06/luxury-1961577_960_720-1.jpg[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text] Last month, Valour Consultancy released its latest analysis of the market for in-flight connectivity on VIP and business aircraft. The study draws upon our considerable expertise in analysing the adoption of in-flight connectivity (IFC) in commercial aviation and is the result of a rigorous primary research phase consisting of numerous interviews with key players from across the industry. The report finds that, globally, there were 19,131 IFC systems on VIP and business aircraft at the end of 2016. L-band was by far and away the most dominant connectivity technology with cumulative connections representing 75% of the total. A large proportion of this is accounted for by Iridium, whose systems support in-flight satellite phone operations on almost 10,000 aircraft. The remainder of L-band connections are accounted for by Inmarsat, which has seen adoption of SwiftBroadband (SBB) pick up rapidly in recent years. Uptake of Gogo’s Air-to-Ground (ATG) options has been similarly brisk in recent years. By the end 2013, there were 2,047 terminals connected to the Gogo Biz network. This had increased to 4,172 three years later. ATG and L-band both have room for further growth in coming years, too. With respect to ATG, there will likely be continued interest in Gogo’s solutions over the course of the forecast period (2016 to 2026), especially now that the company is close to commercial launch of Gogo Biz 4G and plans to have its next-generation ATG network, which will offer peak network speeds of more than 100 Mbps, up and running by 2018. When you add SmartSky Networks and its 4G network into the mix, as well as the Inmarsat European Aviation Network (EAN), it is apparent that there remains plenty of potential for ATG technology. Though it is yet to be officially confirmed whether the EAN will be used by the business aviation industry, there appears to be consensus that it would work very well on board private aircraft. While Inmarsat is reportedly seeing a lot of interest from operators looking to upgrade from lower-bandwidth IFC systems to Jet ConneX, the company is also working on increasing the performance of the L-band technology used for SBB. Iridium, meanwhile, is currently prepping for the launch of the second batch of Iridium NEXT satellites, which are due for lift off on the 25th June. Upon completion of the constellation in 2018 and the start of commercial service one year later, the so-called Iridium Certus solution will likely find favour among operators of those small- and medium-sized business jets less suited to the fitment of bulky radomes. Adoption of Ku-band technology on VIP and business aircraft appears to have an equally rosy future – a view presumably shared by new market entrants, Panasonic Avionics and Global Eagle, as well as Gogo, which recently announced its first business aviation customer for 2Ku. Right now, there are some 500 Ku-band systems in operation on VIP and business aircraft and the vast majority of these are accounted for by ViaSat and its Yonder system (although it's no longer referred to as Yonder, to shift the focus towards the ViaSat brand). Panasonic and Global Eagle representatives have not been shy in admitting that they are gunning for ViaSat in this market. However, ViaSat appears content to focus on ensuring existing clients migrate to its Ka-band technology – a sensible strategy given the ongoing success of its Exede in the Air product in commercial aviation. Now that ViaSat-2 has finally launched after several setbacks, there will soon be a considerable amount of additional Ka-band capacity for business jets flying between North America and Europe. Additionally, the company says that it will have its three planned ViaSat-3 satellites operational around 2020 making ViaSat the only rival provider of global Ka-band capacity to Inmarsat. By 2020, ViaSat could have some catching up to do if the take up of Jet ConneX is anything to go by. Having debuted in November 2016, there were an estimated 30 aircraft fitted with the solution by the turn of the year. Inmarsat has previously stated that it expects to see 150 Jet ConneX-equipped aircraft by the end of 2017 and has a goal of connecting 3,000 jets by 2020 (although it is apparently now upgrading its forecasts). Overall, we are forecasting that by the end of 2026, there will be 37,710 IFC systems installed on VIP and business aircraft – almost double the current total. The reader should, of course, note that these numbers do not refer to the number of aircraft with IFC. In fact, it is estimated that today, around 1,000 to 2,000 aircraft with Iridium satellite phones also make use of Inmarsat’s SBB network. Likewise, Gogo has publicly reported 4,172 connections to its Gogo Biz service and acts as the service provider for 5,286 installed Iridium terminals as well as 214 installed SBB terminals (a total of 9,972 connections – all accurate and up to date at the end of 2016). However, the firm delivers services to 7,400 aircraft implying many are flying with more than one system installed. The following factors have driven interest in IFC on VIP and business aircraft and will continue to do so in future:
  • Owners of business aircraft fitted with connectivity equipment some time ago will be keener to take advantage of more recent advances in satellite and hardware technology.
  • The ‘Uber-isation’ of the private aviation industry is increasingly being talked about and with e-commerce replacing traditional methods of sourcing and booking a business jet, easy comparisons between different operators and aircraft means that customers can see where one aircraft has IFC and another doesn’t. This transparency will further encourage operators to improve their offerings.
  • As well as the increased comparison between business jets and their features because of new e-commerce initiatives, business aviation is having to compete with the rapid adoption of IFC in commercial air transport perhaps making a first class connected seat more attractive than a private jet with no in-flight Wi-Fi.
  • Competition is hotting up with the likes of Global Eagle, Panasonic Avionics, BizJetMobile and SmartSky Networks all new to the market or preparing to enter.
  • The launch of several new high throughput satellites (HTS) and the prospect of cheaper capacity and faster services is having an extremely positive effect on the market with service providers having inked several new deals in recent years.
  • The connected aircraft and e-Enablement is beginning to resonate more and more as a way to drive operational efficiencies and help underpin the IFC business case.
Some of the remaining challenges to more widespread adoption of IFC on VIP and business aircraft are as follows.
  • Production of new business jets has stagnated and consequently reduced the possibility of line-fit offerability deals for many IFC providers and limited their opportunities for growth.
  • Fitting an aircraft with a sizeable antenna to enable IFC impacts aerodynamics and increases fuel burn, thereby driving up operating costs. Additionally, many smaller business jets are currently unable to accommodate larger Ku- and Ka-band antennas on their fuselages.
  • Current generation Ku-/Ka-band systems lock operators into the service provider (so the hardware is not provider agnostic) and should there be a desire to switch, a very expensive refit ensues.
  • While commercial airlines tend to fly set routes at specific times of day, business jets are more sporadic. One day they may be flying domestically in the US, the next they may be making their way to China or Russia. This uncertainty means high-bandwidth IFC solutions that offer global coverage – which are currently few in number – are perhaps more compelling.
  • Many in the industry are concerned that as we move towards realising the vision of the fully-connected aircraft, the opportunity for cyberattacks will increase. The main worry seems to be that such systems will allow wrongdoers to control aircraft and manipulate commands issued to the aircraft. It should be noted that flight control systems are purposefully isolated from all other communications networks on-board the aircraft.
  • Selling an IFC service based on deployment events that have not happened is a significant challenge and operators understandably give much more credit to satellite assets in space than on paper. Further, a delay to the launch of any service has the potential to scare prospective customers away or send them into the arms of rivals. Unfortunately, such delays are all too commonplace for many much-anticipated IFC solutions.
Published in May 2017, “The Market for In-Flight Connectivity on VIP and Business Aircraft” provides an unrivalled insight and analysis into the current and future deployment of IFC on these aircraft. The number of IFC systems installed in 2016 is quantified with forecasts out to 2026 and data is segmented by fitment type, aircraft size, frequency band and geographic region with a full qualitative discussion of the key trends at play in support of this. The report also sizes the market for both service revenues and key enabling hardware, in addition to market share estimates for service providers and capacity providers. A chapter profiling key players is presented, too. [/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

The Internet of Aircraft Things: Benefits of eTechlog and eCabin Logbook

eTechlog

The aircraft technical log is the last known status of the aircraft in terms of its current flying hours, current maintenance state (including the carrying of any acceptable deferred defects that may affect the aircraft in operation), the fuel and fluids status for the aircraft at the point of departure, and includes signatures of engineers and pilots that have signed for certain events having been completed on the aircraft turnaround to release the aircraft back into service. The electronic techlog (eTechlog) is an electronic replacement for the paper-based logbook and can be operated on a large range of portable devices.

Though a quickly growing market, eTechlog has still not yet been widely adopted by the world’s airlines. There are several reasons for this. First, the business case is not always immediately obvious and the cost savings are perhaps not as overt as with EFB. Second, eTechlog has an impact on many different airline departments and it can be difficult for these siloes to come together in consensus. Third, the technical logbook is as important as the flight data recorder (FDR) and is therefore highly regulated. Nevertheless, the advent of the iPad – though not a panacea to all electronic processes – has helped spur adoption, while understanding of the benefits surrounding eTechlog is growing and competition is hotting up.

The benefits of eTechlog are numerous and include:

  • Improved data quality. Paper-based technical logbooks consist of handwritten notes. Moving to eTechlog ensures that there is no debate around what has been written and mistakes associated with transcribing these notes are eliminated. With eTechlog, information can be captured in legible free form or better still, using pre-defined text entries to remove any element of doubt.
  • Central booking staff are no longer required to manually enter logbook entries into back-end systems thus reducing administration costs.
  • Costs associated with the purchasing, storing, handling and transportation of paper are eradicated.
  • Data is transferred automatically to airline maintenance operations control centres via on-ground networks or IFC. This provides engineering and flight operations with real-time analysis and control. Traditionally, paper logbook pages are faxed/scanned back and this makes it difficult to guarantee the timely and accurate delivery of technical data.
  • No more compliance issues around lost logbooks, or logbooks on the wrong aircraft.
  • More efficient maintenance actions. By having access to consistent and accurate data, there is less likelihood of parts being wrongly replaced. Longer term analysis of data can also reveal trends that indicate when and why a defect may occur allowing shop visits to be scheduled accordingly.
  • For mobile eTechlog solutions (i.e. those that are not permanently mounted or installed), supplemental type certificates (STCs) are not required, which represents another large cost saving.
  • With in-flight offload of information, initial troubleshooting can begin immediately and labour/parts sent to the arrival airport to carry out any remedial action, potentially preventing or minimising delays for a faster turnaround.

Currently, there is a debate around whether there is a need to offload eTechlog data during flight. One school of thought suggests that any serious problems arising mid-flight are best tackled by the pilot who should not otherwise be concerned with entering the details of the problem in eTechlog. On the flip side, there is a strong argument for data to be sent in real-time. As mentioned in the last bullet point above, the possibility of having aircraft turned around quicker is compelling. The increase in aircraft equipped with IFC is driving the desire to send eTechlog data in flight. Though ACARS can be used, there is some trepidation around the cost and somewhat limited nature of this transmission medium. Another benefit of using IFC is that logbook data can be stored on the on-board server meaning a master copy is essentially kept on the aircraft at all times.

Despite these benefits, some airlines remain convinced that the paper-based logbook is quicker and more efficient. The challenge for industry participants is, therefore, to try and convince airlines that there are tangible cost savings to be had by implementing eTechlog. Companies interviewed for out recently published report “How the Connected Aircraft Fits into the Internet of Things” indicated that a typical ROI is in the region of 18 months, sometimes less. Conduce, one of the leading vendors in this space, claims relatively accurate data from an undisclosed airline customer shows cost savings over a five-year period are around €3-5 million. Of course, actual savings and business benefits of adopting eTechlog vary greatly and are dependent upon several factors specific to the airline. As an example, an isolated maintenance delay for a large airline consisting of 500-600 aircraft would have much less of an impact than it would on a much smaller airline with say, 20 aircraft in the fleet. Ultramain, another key eTechlog solution provider, has developed a free app called eJustify, which aims to walk airlines through how, exactly, eTechlog can be beneficial.

It should be noted that there are two distinct methods to delivering eTechlog. The first involves software loaded onto a dedicated device that is used only for this purpose. Conduce is a proponent of this approach and installs its eTechLog8 application on appropriately approved Windows tablets, which are completely locked down and managed by the company. They are supplied with a Certificate of Conformity and treated in the same as any other aircraft component and so become aircraft-centric and tail-specific. For others, eTechlog is one of many EFB applications. As such, they are pilot-centric in their use and are issued directly to the pilot who takes it on and off the aircraft.

As eTechlog adoption gathers momentum, we are likely to see a shift towards more and more solutions transmitting data during flight over IFC. Additionally, eTechlog will morph into a much more advanced solution that combines data from a myriad of onboard sensors and components. Such a scenario might see a level of communication between previously disparate aircraft systems that allow for certain logbook entries to be completed automatically, without any input from the pilot except for his or her approval. This would further reduce the pilot’s workload, ensure even more accurate data entry as well as reduce so-called no-fault found (NFF) errors.

This last point is particularly important as NFF part replacements cost airlines millions of dollars every year. For the uninitiated, NFF refers to a situation where a part is replaced to repair an apparently failed piece of equipment. When the part is returned to the factory for quality analysis or for repair and re-certification, diagnostic tests do not detect any problem. Although a rare occurrence, engineers sometimes replace a part but are unable to update the information in the technical logbook. As such, the team at the next stop may still see an action indicated in the system and replace the part again, unnecessarily.

Apart from Conduce and Ultramain, other notable vendors in this space are NVABLE and CrossConsense.

eCabin Logbook

Paper log books aren’t just the preserve of the cockpit. Crew members use cabin logbooks to record any defects they encounter in the cabin. This can include things like faulty in-flight entertainment (IFE) systems, lightbulbs that need replacing and even broken or dirty seats. These paper write-ups are handed to the pilot who then enters into the technical logbook any defects that are airworthiness related and reports them to maintenance via ACARS.

As is the case with the paper technical log, issues with illegible handwriting and manual data entry are not uncommon, while the reporting phase often happens during the aircraft’s descent when pilots are busiest. eCabin logbook is faster, more accurate, more reliable and more efficient. Additionally, devices hosting eCabin logbook software can be linked to eTechlog hardware via connectivity such as Wi-Fi Direct so that defects are automatically recorded in the latter. However, several airlines have opted for standalone eCabin logbook before embracing eTechlog, which is a broader application, and this is reflective of a phased approach to connected aircraft applications more generally.

The capabilities of the eCabin logbook will continue to expand in future. Sensors in the cabin will doubtless be able to self-report defects and record them automatically. Cabin crews would simply review entries for approval rather that reporting them manually. As with eTechlog, analysis of cabin defects over time may well reveal patterns that result in improved ability to predict and respond.

-
[fusion_builder_container hundred_percent="no" equal_height_columns="no" menu_anchor="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" background_color="" background_image="" background_position="center center" background_repeat="no-repeat" fade="no" background_parallax="none" parallax_speed="0.3" video_mp4="" video_webm="" video_ogv="" video_url="" video_aspect_ratio="16:9" video_loop="yes" video_mute="yes" overlay_color="" video_preview_image="" border_size="" border_color="" border_style="solid" padding_top="" padding_bottom="" padding_left="" padding_right=""][fusion_builder_row][fusion_builder_column type="1_1" layout="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" border_position="all" spacing="yes" background_image="" background_repeat="no-repeat" padding_top="" padding_right="" padding_bottom="" padding_left="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="small-visibility,medium-visibility,large-visibility" center_content="no" last="no" min_height="" hover_type="none" link=""][fusion_imageframe image_id="5016|full" max_width="" style_type="" blur="" stylecolor="" hover_type="none" bordersize="" bordercolor="" borderradius="" align="center" lightbox="no" gallery_id="" lightbox_image="" lightbox_image_id="" alt="" link="" linktarget="_self" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]http://217.199.187.200/valourconsultancy.com/wp-content/uploads/2017/02/jetliner-1767818_960_720-1.jpg[/fusion_imageframe][fusion_separator style_type="default" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" sep_color="#ffffff" top_margin="20" bottom_margin="20" border_size="" icon="" icon_circle="" icon_circle_color="" width="" alignment="center" /][fusion_text columns="" column_min_width="" column_spacing="" rule_style="default" rule_size="" rule_color="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" class="" id="" animation_type="" animation_direction="left" animation_speed="0.3" animation_offset=""]

eTechlog

The aircraft technical log is the last known status of the aircraft in terms of its current flying hours, current maintenance state (including the carrying of any acceptable deferred defects that may affect the aircraft in operation), the fuel and fluids status for the aircraft at the point of departure, and includes signatures of engineers and pilots that have signed for certain events having been completed on the aircraft turnaround to release the aircraft back into service. The electronic techlog (eTechlog) is an electronic replacement for the paper-based logbook and can be operated on a large range of portable devices. Though a quickly growing market, eTechlog has still not yet been widely adopted by the world’s airlines. There are several reasons for this. First, the business case is not always immediately obvious and the cost savings are perhaps not as overt as with EFB. Second, eTechlog has an impact on many different airline departments and it can be difficult for these siloes to come together in consensus. Third, the technical logbook is as important as the flight data recorder (FDR) and is therefore highly regulated. Nevertheless, the advent of the iPad – though not a panacea to all electronic processes – has helped spur adoption, while understanding of the benefits surrounding eTechlog is growing and competition is hotting up. The benefits of eTechlog are numerous and include:
  • Improved data quality. Paper-based technical logbooks consist of handwritten notes. Moving to eTechlog ensures that there is no debate around what has been written and mistakes associated with transcribing these notes are eliminated. With eTechlog, information can be captured in legible free form or better still, using pre-defined text entries to remove any element of doubt.
  • Central booking staff are no longer required to manually enter logbook entries into back-end systems thus reducing administration costs.
  • Costs associated with the purchasing, storing, handling and transportation of paper are eradicated.
  • Data is transferred automatically to airline maintenance operations control centres via on-ground networks or IFC. This provides engineering and flight operations with real-time analysis and control. Traditionally, paper logbook pages are faxed/scanned back and this makes it difficult to guarantee the timely and accurate delivery of technical data.
  • No more compliance issues around lost logbooks, or logbooks on the wrong aircraft.
  • More efficient maintenance actions. By having access to consistent and accurate data, there is less likelihood of parts being wrongly replaced. Longer term analysis of data can also reveal trends that indicate when and why a defect may occur allowing shop visits to be scheduled accordingly.
  • For mobile eTechlog solutions (i.e. those that are not permanently mounted or installed), supplemental type certificates (STCs) are not required, which represents another large cost saving.
  • With in-flight offload of information, initial troubleshooting can begin immediately and labour/parts sent to the arrival airport to carry out any remedial action, potentially preventing or minimising delays for a faster turnaround.
Currently, there is a debate around whether there is a need to offload eTechlog data during flight. One school of thought suggests that any serious problems arising mid-flight are best tackled by the pilot who should not otherwise be concerned with entering the details of the problem in eTechlog. On the flip side, there is a strong argument for data to be sent in real-time. As mentioned in the last bullet point above, the possibility of having aircraft turned around quicker is compelling. The increase in aircraft equipped with IFC is driving the desire to send eTechlog data in flight. Though ACARS can be used, there is some trepidation around the cost and somewhat limited nature of this transmission medium. Another benefit of using IFC is that logbook data can be stored on the on-board server meaning a master copy is essentially kept on the aircraft at all times. Despite these benefits, some airlines remain convinced that the paper-based logbook is quicker and more efficient. The challenge for industry participants is, therefore, to try and convince airlines that there are tangible cost savings to be had by implementing eTechlog. Companies interviewed for out recently published report “How the Connected Aircraft Fits into the Internet of Things” indicated that a typical ROI is in the region of 18 months, sometimes less. Conduce, one of the leading vendors in this space, claims relatively accurate data from an undisclosed airline customer shows cost savings over a five-year period are around €3-5 million. Of course, actual savings and business benefits of adopting eTechlog vary greatly and are dependent upon several factors specific to the airline. As an example, an isolated maintenance delay for a large airline consisting of 500-600 aircraft would have much less of an impact than it would on a much smaller airline with say, 20 aircraft in the fleet. Ultramain, another key eTechlog solution provider, has developed a free app called eJustify, which aims to walk airlines through how, exactly, eTechlog can be beneficial. It should be noted that there are two distinct methods to delivering eTechlog. The first involves software loaded onto a dedicated device that is used only for this purpose. Conduce is a proponent of this approach and installs its eTechLog8 application on appropriately approved Windows tablets, which are completely locked down and managed by the company. They are supplied with a Certificate of Conformity and treated in the same as any other aircraft component and so become aircraft-centric and tail-specific. For others, eTechlog is one of many EFB applications. As such, they are pilot-centric in their use and are issued directly to the pilot who takes it on and off the aircraft. As eTechlog adoption gathers momentum, we are likely to see a shift towards more and more solutions transmitting data during flight over IFC. Additionally, eTechlog will morph into a much more advanced solution that combines data from a myriad of onboard sensors and components. Such a scenario might see a level of communication between previously disparate aircraft systems that allow for certain logbook entries to be completed automatically, without any input from the pilot except for his or her approval. This would further reduce the pilot’s workload, ensure even more accurate data entry as well as reduce so-called no-fault found (NFF) errors. This last point is particularly important as NFF part replacements cost airlines millions of dollars every year. For the uninitiated, NFF refers to a situation where a part is replaced to repair an apparently failed piece of equipment. When the part is returned to the factory for quality analysis or for repair and re-certification, diagnostic tests do not detect any problem. Although a rare occurrence, engineers sometimes replace a part but are unable to update the information in the technical logbook. As such, the team at the next stop may still see an action indicated in the system and replace the part again, unnecessarily. Apart from Conduce and Ultramain, other notable vendors in this space are NVABLE and CrossConsense.

eCabin Logbook

Paper log books aren’t just the preserve of the cockpit. Crew members use cabin logbooks to record any defects they encounter in the cabin. This can include things like faulty in-flight entertainment (IFE) systems, lightbulbs that need replacing and even broken or dirty seats. These paper write-ups are handed to the pilot who then enters into the technical logbook any defects that are airworthiness related and reports them to maintenance via ACARS. As is the case with the paper technical log, issues with illegible handwriting and manual data entry are not uncommon, while the reporting phase often happens during the aircraft’s descent when pilots are busiest. eCabin logbook is faster, more accurate, more reliable and more efficient. Additionally, devices hosting eCabin logbook software can be linked to eTechlog hardware via connectivity such as Wi-Fi Direct so that defects are automatically recorded in the latter. However, several airlines have opted for standalone eCabin logbook before embracing eTechlog, which is a broader application, and this is reflective of a phased approach to connected aircraft applications more generally. The capabilities of the eCabin logbook will continue to expand in future. Sensors in the cabin will doubtless be able to self-report defects and record them automatically. Cabin crews would simply review entries for approval rather that reporting them manually. As with eTechlog, analysis of cabin defects over time may well reveal patterns that result in improved ability to predict and respond. [/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]